WNE Linear Algebra Final Exam
 Series A

1 February 2012

Please use separate sheets for different problems. Please provide the following data on each sheet

- name, surname and your student number,
 - number of your group,
 - number of the corresponding problem and its series.

Problem 1.

Let $V=\operatorname{lin}((1,2,1,1),(1,0,0,2),(1,4,2,0),(3,2,1,5))$ be a subspace of \mathbb{R}^{4}.
a) find basis and dimension of the space V,
b) find a system of linear equations which set of solutions is equal to V,

Problem 2.

Let $W \subset \mathbb{R}^{5}$ be a subspace given by the homogeneous system of linear equations

$$
\left\{\begin{array}{cccccccc}
x_{1} & +x_{2} & +2 x_{3} & + & 2 x_{4} & -x_{5} & =0 \\
2 x_{1} & +3 x_{2} & + & x_{3} & - & x_{4} & + & x_{5}
\end{array}=0\right.
$$

a) find basis and dimension of the space W,
b) let $V_{s}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right): x_{2}-3 x_{3}+s x_{4}+3 x_{5}=0\right\}$ for $s \in \mathbb{R}$. Give all $s \in \mathbb{R}$ for which $W \subset V_{s}$

Problem 3.

Let endomorphism $\varphi_{t}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be given by the formula $\varphi_{t}\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(2 x_{1}+\right.$ $\left.2 x_{2}+t x_{3}, 2 x_{1}+5 x_{2}+6 x_{3}, x_{3}\right)$.
a) find eigenvalues of φ_{t} and bases of the corresponding eigenspaces for $t=0$,
b) for which $t \in \mathbb{R}$ there exists a basis of \mathbb{R}^{3} such that the matrix of φ_{t} relative to it is diagonal.

Problem 4.

Let $\mathcal{A}=((1,0,1),(0,1,0),(1,0,2))$ be an ordered basis of \mathbb{R}^{3} and let $\mathcal{B}=((1,1),(1,2))$ be and ordered basis of \mathbb{R}^{2}. The linear transformation $\psi: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ is given by the matrix $M(\psi)_{\mathcal{A}}^{\mathcal{B}}=\left[\begin{array}{ccc}1 & 2 & 0 \\ 1 & 1 & -1\end{array}\right]$. The linear transformation $\varphi: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is given by the formula $\varphi\left(\left(x_{1}, x_{2}\right)\right)=\left(x_{1}-x_{2}, x_{1}+x_{2}\right)$.
a) find formula of ψ,
b) compute matrix $M(\varphi \circ \psi){ }_{\mathcal{A}}^{\mathcal{B}}$.

Problem 5.

Let $V=\operatorname{lin}((1,2,0,1),(2,3,0,2),(0,0,1,0))$ be subspace of \mathbb{R}^{4} and let $P=(1,1,1,2), Q=$ $(3,0,0,1)$ be points in \mathbb{R}^{4}.
a) find equation of the affine space $H=P+V \subset \mathbb{R}^{4}$,
b) find a parametrization of the line containing Q and perpendicular to H, find the image of Q under the orthogonal projection onto H.

Problem 6.
Let $A_{t}=\left[\begin{array}{lll}1 & 0 & 2 \\ 3 & 3 & t \\ 2 & 3 & 1\end{array}\right]$ for $t \in \mathbb{R}$.
a) for which $t \in \mathbb{R}$ the matrix A_{t} is invertible?
b) for which $t \in \mathbb{R}$ the entry in the second column and the first row of A^{-1} is equal to -2 ?

Problem 7.

Let $q_{t}: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ be a quadratic form $x_{1}^{2}+5 x_{2}^{2}+x_{3}^{2}+4 x_{1} x_{2}+2 t x_{2} x_{3}$.
a) for which $t \in \mathbb{R}$ the form q_{t} is positive definite?
b) check if q_{t} is either positive semidefinite or negative semidefinite for $t=1$.

Problem 8.

Consider the following linear programming problem $x_{1}-x_{2}-x_{5} \rightarrow$ min in the standard form with constraints

$$
\left\{\begin{aligned}
x_{1}-x_{2} & +2 x_{3} \\
x_{2} & +2 x_{3}+x_{4}+x_{5}=5 \\
& +x_{5}=2
\end{aligned} \text { and } x_{i} \geqslant 0 \text { for } i=1, \ldots, 5\right.
$$

a) which of the basic solutions $\mathcal{B}_{1}=\{1,4\}, \mathcal{B}_{2}=\{3,4\}$ are feasible?
b) solve the above linear programming problem using simplex method.

