WNE Linear Algebra Final Exam

Series A

1 February 2012

Please use separate sheets for different problems. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and its series.

Problem 1.

Let $V = \lim((1, 2, 1, 1), (1, 0, 0, 2), (1, 4, 2, 0), (3, 2, 1, 5))$ be a subspace of \mathbb{R}^4 .

- a) find basis and dimension of the space V,
- b) find a system of linear equations which set of solutions is equal to V,

Problem 2.

Let $W \subset \mathbb{R}^5$ be a subspace given by the homogeneous system of linear equations

 $\begin{cases} x_1 &+ x_2 &+ 2x_3 &+ 2x_4 &- x_5 &= 0\\ 2x_1 &+ 3x_2 &+ x_3 &- x_4 &+ x_5 &= 0 \end{cases}$

- a) find basis and dimension of the space W,
- b) let $V_s = \{(x_1, x_2, x_3, x_4, x_5) : x_2 3x_3 + sx_4 + 3x_5 = 0\}$ for $s \in \mathbb{R}$. Give all $s \in \mathbb{R}$ for which $W \subset V_s$

Problem 3.

Let endomorphism $\varphi_t \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be given by the formula $\varphi_t((x_1, x_2, x_3)) = (2x_1 + 2x_2 + tx_3, 2x_1 + 5x_2 + 6x_3, x_3).$

- a) find eigenvalues of φ_t and bases of the corresponding eigenspaces for t = 0,
- b) for which $t \in \mathbb{R}$ there exists a basis of \mathbb{R}^3 such that the matrix of φ_t relative to it is diagonal.

Problem 4.

Let $\mathcal{A} = ((1, 0, 1), (0, 1, 0), (1, 0, 2))$ be an ordered basis of \mathbb{R}^3 and let $\mathcal{B} = ((1, 1), (1, 2))$ be and ordered basis of \mathbb{R}^2 . The linear transformation $\psi \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ is given by the matrix $M(\psi)_{\mathcal{A}}^{\mathcal{B}} = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & -1 \end{bmatrix}$. The linear transformation $\varphi \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is given by the formula $\varphi((x_1, x_2)) = (x_1 - x_2, x_1 + x_2)$.

- a) find formula of ψ ,
- b) compute matrix $M(\varphi \circ \psi)^{\mathcal{B}}_{\mathcal{A}}$.

Problem 5.

Let V = lin((1, 2, 0, 1), (2, 3, 0, 2), (0, 0, 1, 0)) be subspace of \mathbb{R}^4 and let P = (1, 1, 1, 2), Q = (3, 0, 0, 1) be points in \mathbb{R}^4 .

a) find equation of the affine space $H = P + V \subset \mathbb{R}^4$,

b) find a parametrization of the line containing Q and perpendicular to H, find the image of Q under the orthogonal projection onto H.

Problem_6.

Let $A_t = \begin{bmatrix} 1 & 0 & 2 \\ 3 & 3 & t \\ 2 & 3 & 1 \end{bmatrix}$ for $t \in \mathbb{R}$.

- a) for which $t \in \mathbb{R}$ the matrix A_t is invertible?
- b) for which $t \in \mathbb{R}$ the entry in the second column and the first row of A^{-1} is equal to -2?

Problem 7.

Let $q_t \colon \mathbb{R}^3 \longrightarrow \mathbb{R}$ be a quadratic form $x_1^2 + 5x_2^2 + x_3^2 + 4x_1x_2 + 2tx_2x_3$.

- a) for which $t \in \mathbb{R}$ the form q_t is positive definite?
- b) check if q_t is either positive semidefinite or negative semidefinite for t = 1.

Problem 8.

Consider the following linear programming problem $x_1 - x_2 - x_5 \rightarrow \min$ in the standard form with constraints

$$\begin{cases} x_1 & -x_2 & +2x_3 & +2x_5 & =5\\ & x_2 & +2x_3 & +x_4 & +x_5 & =2 \end{cases} \text{ and } x_i \ge 0 \text{ for } i = 1, \dots, 5$$

a) which of the basic solutions $\mathcal{B}_1 = \{1, 4\}, \mathcal{B}_2 = \{3, 4\}$ are feasible?

b) solve the above linear programming problem using simplex method.